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a b s t r a c t

An energy-efficient Wireless Sensor Network (WSN) design often requires the decision of optimal loca-
tions (deployment) and power assignments of the sensors to be densely deployed in an area of interest. In
the literature, no attempts have been made on optimizing both decision variables for maximizing the net-
work coverage and lifetime objectives, while maintaining the connectivity constraint, at the same time. In
this paper, the Dense Deployment and Power Assignment Problem (d-DPAP) in Wireless Sensor Networks
(WSNs) is defined, and a Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
hybridized with a problem-specific Generalized Subproblem-dependent Heuristic (GSH), is proposed. In
our method, the d-DPAP is decomposed into a number of scalar subproblems. The subproblems are opti-
ense deployment
ulti-objective optimization

volutionary algorithms
ecomposition
euristics

mized in parallel, by using neighbourhood information and problem-specific knowledge. The proposed
GSH probabilistically alternates between six d-DPAP specific strategies, which are designed based on
various WSN concepts and according to the subproblems objective preferences. Simulation results have
shown that the proposed hybrid problem-specific MOEA/D performs better than the general-purpose
MOEA/D and NSGA-II in several WSN instances, providing a diverse set of high-quality near-optimal net-

the d
roblem-specific knowledge work designs to facilitate
space is also discussed.

. Introduction

A critical issue in energy-efficient Wireless Sensor Networks
WSNs) [1] design is the decision of locations (deployment) and
ransmit power levels of the sensors to be deployed in an area
f interest [2], for maximizing the network coverage and lifetime
bjectives while maintaining connectivity. In most studies [3–6],
he coverage and lifetime objectives are optimized individually,
oncentrating in deciding either optimal locations assuming fixed
ransmit power levels, or optimal transmit power levels assum-
ng random deployment. The Deployment and Power Assignment
roblem (DPAP) [7] aims at maximizing both objectives while
aintaining connectivity by deciding optimal locations and trans-
it power levels simultaneously, in a single run.
Maximizing the coverage and lifetime objectives individually
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

as the main focus of several studies in the past. Many practi-
ioners, such as Meguerdichian et al. [8], have pointed out that
he coverage objective is a measure of the quality of service (QoS)
hat is provided by a particular network design. Several researchers
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ecision making process. The behavior of the MOEA/D-GSH in the objective

© 2011 Elsevier B.V. All rights reserved.

[3,4] have proven the NP-hardness of various deployment prob-
lems that focus in determining optimal sensor placements to cover
a grid area [4] or minimize the cost or prolong the network life-
time [9]. Furthermore, in sensor network applications where the
number of sensors is large and the desired area is small, the sen-
sors that are close to the sink often burden most of the traffic load
and deplete their energy supply first [5,6]. In those cases, the trans-
mit power levels of the sensors is often increased to provide load
balancing [10]. However, operating at high transmit power levels
often results on a premature exhaustion of the sensors initial power
supply, which is a scarce resource for the energy-constraint sen-
sor devices [10]. Thus, several studies have focused in assigning
energy efficient transmit power levels to the sensors to maximize
the network lifetime under certain energy constraints [11], this
is commonly known as the power/range assignment problem in
WSNs [12] and it is proven NP-hard by [13]. The same problem,
while maintaining connectivity [14,15] is proven NP Complete by
Cheng et al. in [16]. Few studies have tackled the two problems,
i.e. deployment and power assignment in WSNs, simultaneously
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

[5,6,10]. However, those approaches optimize the lifetime and cov-
erage objectives individually and sequentially, or by constraining
one and optimizing the other. This often results in ignoring and
losing “better” solutions since WSN coverage and lifetime are con-
flicting objectives [17]. Therefore, there is not a single solution to

dx.doi.org/10.1016/j.asoc.2011.02.031
dx.doi.org/10.1016/j.asoc.2011.02.031
http://www.sciencedirect.com/science/journal/15684946
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aximize both objectives simultaneously and a decision maker
18] needs an optimal trade-off of candidate solutions.

Because so many different aspects are involved, the respective
PAP is a proper object for Multi-Objective Optimization (MOO)

19]. In a Multi-objective Optimization Problem (MOP), a candidate
rade-off solution is often called non-dominated or Pareto optimal.
he set of all Pareto optimal or non-dominated solutions in the
earch space, also called Pareto Set (PS), is often mapped to a Pareto
ront (PF) in the objective space [20]. Multi-objective Evolutionary
lgorithms (MOEAs) could obtain such an approximate PF in a sin-
le run [18]. This is mainly due to the fact that MOEAs accommodate
ifferent forms of operators to iteratively generate a population of
olutions. In the literature, several general purpose MOEA frame-
orks are used for dealing with MOPs in WSNs [17,21–24] such

s the Non-dominated Sorting Genetic Algorithm-II [25] (NSGA-II).
owever, all the aforementioned studies treat a WSN MOP as a

black box” [26], i.e. without using problem-specific knowledge,
hich may have undesirable effects, such as forcing the evolu-

ionary process into unnecessary searches and destructive mating,
egatively affecting their overall performance [27]. This can be con-
idered as a main drawback of the generic MOEAs when dealing
ith real life problems (such as DPAP) [7].

The incorporation of problem-specific knowledge in EAs to
trategically generate new solutions and their hybridization with
roblem-specific (local search) techniques has been proven bene-
cial [14,28], in the past. These methods (also known as Memetic
lgorithms [29]) are powerful in Single Objective Optimization

SOO) [30]. Therefore, it is worthwhile to study how problem-
pecific techniques can be used to improve the performance of
OEAs. Not much effort has been given along this direction because

t is not so simple as in SOO and designing problem-specific opera-
ors for a MOP as a whole is a difficult task [31]. The Multi-objective
volutionary Algorithm based on Decomposition (MOEA/D) [32]
lleviates this difficulty by decomposing the MOP into a set of sin-
le objective subproblems, which are tackled in parallel by using
deas from SOO problem-specific techniques [7].

In our previous works, we have studied DPAPs with large-
cale [33] sensing areas, in which a number of sensors is sparsely
eployed to maximize the network lifetime and coverage objec-
ives [7,27]. The incorporation of problem-specific knowledge in

OEA/D’s genetic operators [7] as well as its hybridization with
roblem-specific techniques [34] have shown promising results. In
35], we have introduced a constrained DPAP that aims at maximiz-
ng the same objectives while maintaining the K-connectivity (fault
olerance) constraint. In the latter, we have proposed a problem-
pecific Repair Heuristic (RH) to deal with the infeasible solutions
nd direct the search into promising feasible regions of the objec-
ive space. More recently [36], we have successfully utilized our
roblem specific MOEA/D-based genetic operators to the Mobile
gent-based Sensor Network Routing problem.

In this paper, we deal with a constraint DPAP for small-scale
ense WSN topologies, coined d-DPAP, (e.g. for security [37], mil-

tary and environmental applications [38]) considering a more
ealistic energy model, compared to the DPAP tackled for exam-
le in [7]. The goal of the d-DPAP is to assign locations and transmit
ower levels to a high number of sensors to be deployed in a small
ensing area and maximize the WSN coverage and lifetime while
aintaining connectivity, at the same time. Note that, the higher
SN density increases the problem’s difficulty and introduces new

hallenges to be tackled by the proposed approach, such as load
alancing [10] and minimizing the coverage holes [39]. We pro-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

ose, a Generalized Subproblem-dependent Heuristic (GSH) that
robabilistically alternates between six low-level problem-specific
trategies designed based on the objective preferences and prop-
rties of different subproblems. The six low-level improvement
trategies follow different network concepts, such as managing
 PRESS
t Computing xxx (2011) xxx–xxx

the sensors transmit power levels, decreasing the sensing range
overlaps, providing load balancing and decreasing the networks
coverage holes. GSH probabilistically orchestrates the six improve-
ment strategies and aims at improving the overall performance of
MOEA/D without violating the connectivity constraints. Our major
aim is to show how problem domain knowledge can be extracted
and incorporated to a MOEA based on Decomposition (e.g. MOEA/D
[32] used here, MOGLS [40], etc.) to improve its performance as
well as demonstrate the effectiveness and efficiency of this class
of MOEAs compared to the popular MOEAs based on Pareto dom-
inance class (e.g. NSGA-II [25], MPAES [41], SPEA-II [42], SPGA-II
[43]). To do that, in our simulation studies we have shown that the
proposed hybrid problem-specific MOEA/D-GSH performs better
than the general purpose MOEA/D as well as the state-of-the-art
in MOEAs based on Pareto dominance, i.e. NSGA-II, in various WSN
test instances.

2. The Dense Deployment and Power Assignment Problem
(d-DPAP)

2.1. System model and assumptions

Consider a 2-D static WSN formed by: a high number of N homo-
geneous sensors that are densely deployed to a small rectangular
sensing area A and a static sink H with unlimited energy, placed at
the center of A. We assume a perfect medium access control, such as
SMAC [44], which ensures that there are no collisions at any sensor
during data communication and we adopt the simple but relevant
path loss communication model as in [6]. In this model, the transmit
power level that should be assigned to a sensor i to reach a sensor j
is Pi = ˇ× d˛

ij
, where ˛∈ [2, 6] is the path loss exponent and ˇ = 1 is

the transmission quality parameter. The energy loss due to chan-
nel transmission is d˛

ij
, where dij is the Euclidean distance between

sensors i and j. The communication range of each sensor i is Ric = dij ,
s.t. Ric ≤ Rmax, where Rmax is the maximum communication range
that is determined by the maximum transmit power level that a
sensor can be assigned, denoted as Pmax. The transmit power level
Pi and the coordinates (xi, yi) are the d-DPAP’s decision variables
that are considered fixed for the whole network lifetime, for sensor
i = 1, . . ., N. The residual energy of sensor i, at time t, is calculated as
follows:

Ei(t) = Ei(t − 1) − [Eitx(t) + Eirx(t) + Es], (1)

where Eitx(t) = k× (ri(t) + 1) × (Pi × amp+ Ect), Eirx(t) = k× ri(t) ×
Ect is the amount of energy consumed by sensor i for transmission
and reception, respectively, Es is the amount of energy consumed
for sensing and processing k, which is the amount of data sensed
and collected by a sensor with a fixed sensing range Rs, ri(t) + 1 is
the total traffic load that sensor i forwards towards H at t, ri(t) is the
traffic load that i receives and relays and “+1” is the data packet gen-
erated by i to forward its own data information, amp is the power
amplifier’s energy consumption and Ect is the energy consumption
due to the transmitter and receiver electronics.

Furthermore, it is assumed that A is divided into G uniform con-
secutive grids to make the coverage problem more computationally
manageable [3]. The size of the grids is several times smaller than
�× Rs for a more accurate approximation within the sensing disk.
A sensing model based on the definite range law approximation is
considered [45],{
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

g(x′, y′) = 1 if ∃j∈ {1, . . . , N}, d(xj,yj),(x′,y′) ≤ Rs,
0 otherwise,

(2)

is the monitoring status of a grid centered at (x′, y′) with 1 indicating
that the grid is covered and 0 otherwise.

dx.doi.org/10.1016/j.asoc.2011.02.031
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Finally, the connectivity status of a sensor j is denoted as,

j =
{

1 if j is connected,
0 otherwise,

(3)

here sensor j is considered connected if it directly or through
earby sensors communicates with H.

.2. d-DPAP formulation

The d-DPAP in WSNs can be formulated as a constrained MOP,
Given:

A: small 2-D plane of area size x × y.
N: high number of sensors to be deployed in A.
E: initial power supply, the same for all sensors.
Rs: sensing range, the same for all sensors.
Pmax: maximum transmission power level, the same for all sen-
sors.

Decision variables of solution X:

(xj, yj): the location of sensor j.
Pj: the transmission power level of sensor j.

Objectives: Maximize coverage Cv(X) and lifetime L(X), subject
o connectivity Cn(X) = 1.

The network coverage Cv(X) is defined as the percentage of the
overed grids over the total grids of A and is evaluated as follows:

v(X) =

⎡
⎣ ∑

all(x′,y′)

g(x′, y′)

⎤
⎦

G
, (4)

here G is the total grids of A and g(x′, y′) is calculated using Eq. (2).
The network lifetime L(X) is defined as the duration from the

eployment of the network to the cycle t in which a sensor j depletes
ts energy supply E and is evaluated as as in Algorithm 1.

lgorithm 1. Lifetime evaluation

Step 0: Set t : = 1; Ej(0) : = E, ∀j ∈ {1, . . ., N};
Step 1: For all sensors j at each time interval tdo
Step 1.1: Update Ej(t) according to Eq. (1);
Step 1.2: Assign each incoming link of sensor j a weight equal to
Ej(t);
Step 1.3: Calculate the shortest path from j to H;

Step 2: If ∃ j ∈ {1, . . ., N} such that Ej(t) = 0then stop and set:

L(X) := t;

Else t = t + 1, go to step 1;

The same algorithm can be easily modified to consider different
nergy models in Step 1.1 (e.g. [27]) and routing algorithms in Step
.3 (e.g. geographical-based [15] routing algorithms).

The percentage of connected sensors in X can be measured as
ollows:
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

n(X) = |CS|/N, (5)

here CS = {j | cj = 1}, Cn(X) = 1 when all sensors are connected and
j is calculated using Eq. (3).

In Multi-Objective Optimization (MOO) [20] we need the fol-
owing definitions. We assume that we have n objectives f1, . . ., fn
o maximize.
Fig. 1. The PF of d-DPAP, having XA and XB as the extreme solutions.

Definition 1. Pareto dominance
Suppose x and y are two decision variables, x is said to dominate

y, denoted by x � y, if and only if fi(x) ≥ fi(y) for every i ∈ {1, 2, . . ., n}
and fj(x) > fj(y) for at least one index j ∈ {1, 2, . . ., n}.

Definition 2. Pareto optimality x∗ ∈˝ is said to be Pareto-optimal
(or nondominated) if there is no another x ∈˝ so that x dominates x∗.
The set of all Pareto-optimal solutions in the decision space is called
the Pareto-optimal set (PS). The image of the PS in the objective space
is is called the Pareto-optimal Front (PF).

Fig. 1 illustrates the PF in d-DPAP with n = 2 (i.e. lifetime and
coverage). The Pareto optimal solutions in the PF (marked as solid
diamonds) provide better lifetime and/or coverage than any other
solution in the objective space. The remaining solutions (marked
as open diamonds) are all dominated by at least one solution of
the PF. Solutions XA and XB (marked as solid stars) are often called
the extreme points of the PF [20], since they provide the highest
lifetime and coverage, respectively, than any other solution in the
objective space.

2.3. d-DPAP solution representation and ordering

In d-DPAP, a candidate solution X consists of N items. Its j th item
has two parts, (xj, yj) and Pj, which represent the location and the
transmit power level of sensor j, respectively. The items of a solu-
tion X are ordered as follows: the sensor locations in X are sorted
based on their distance to H, where 1 is the closest and N is the
farthest sensor location with respect to H, respectively. This results
in having the locations of the sensors that are densely deployed
around H at the beginning of each solution and the locations of the
sensors that are spread away at the end, and is commonly known
as the dense-to-spread ordering [7]. Then each sensor j is assigned
a transmit power level Pj proportional to Rjc ≤ Rmax, such that it
reaches its closest neighbour sensor, e.g. k, where k < j.

3. The Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D)

3.1. Decomposition and d-DPAP analysis

MOEA/D initially decomposes the MOP into m single-objective
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

subproblems. In [32] several decompositional techniques are stud-
ied for this purpose, including the Weighted Sum approach used
here. In the multi-objective d-DPAP that considers two objectives,
i.e. lifetime L(X) and coverage Cv(X), the i th single-objective opti-

dx.doi.org/10.1016/j.asoc.2011.02.031
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ig. 2. Classifying the Pareto-optimal network designs of the d-DPAP. This will
enefit the design of appropriate single-objective heuristics to direct the solutions
owards the PF.

ization subproblem is defined as:

ax gi(X,�i) = �iL(X) + (1 − �i)Cv(X),

here �i is the weight coefficient of subproblem i = 1, . . ., m. For
he remainder of this paper, we consider a uniform spread of the
eights �i, which remain fixed for each i for the whole evolution

46] and are determined as follows:

i = 1 −
(
i

m

)
,

or i = 2, . . ., m and �1 = 1.
In the aggregation approaches, such as MOEA/D [32], and

OGLS [40], the �i coefficient is mainly used for decomposing a
OP into single-objective subproblems by adding different weights

o the objectives. In this paper, we have also given a problem-
pecific meaning to this parameter as follows: the �i weight
oefficient of a subproblem i, can also be used to predict the objec-
ive preference of a particular design Xi and therefore its position in
he objective space. For example, the extreme solutions XA and XB in
ig. 2 focus at optimizing one objective each. The extreme solution
A aims at maximizing the lifetime objective ignoring coverage and
he extreme solution XB focuses at maximizing the coverage objec-
ive ignoring lifetime. The goal of d-DPAP, however, is to obtain

trade-off set of solutions between the extreme solutions, pro-
iding the interested users with a diverse set of network design
hoices (e.g. Xa, Xb, and Xc in Fig. 2) to facilitate decision making.
owever, the procedure of designing non-extreme topologies is
omplicated, since there is not a single objective method which can
esign all of them in a single run. Therefore, in order to effectively
eal with the d-DPAP, one should design single-objective heuris-
ics (by extracting knowledge from the problem domain and the
bjectives properties) to be strategically controlled by MOEA/D and
ptimize different areas of the objective space (e.g. a, b, and c in
ig. 2) accordingly. In d-DPAP, improvement heuristics considering
he following problem-specific properties can be shown beneficial:

(a) decrease the sensors’ transmit power levels to reduce their
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

energy consumption and favour the lifetime objective without
affecting the connectivity constraints,

b) provide load balancing [10], often defined as the technique that
spreads the traffic load between two or more sensors, so that
no individual sensor becomes overwhelmed by too much traf-
 PRESS
t Computing xxx (2011) xxx–xxx

fic. This is often achieved by utilizing longer hops to increase
the node-degree of each sensor (i.e. number of one-hop neigh-
bours) and consequently balance the traffic load and/or avoid
heavy loaded critical sensors,

(c) decrease the sensing range overlaps by spreading the sensors
in the area and increasing their transmit power level to favour
the coverage objective and maintain the connectivity,

(d) tackle the so-called coverage-hole problem [39], i.e. a small sub-
area surrounded by connected sensors remains uncovered, to
favour the coverage objective.

Note that, this beneficial procedure cannot be utilized by any
non-decompositional MOEA framework.

3.2. MOEA/D: an overview

A general MOEA/D approach usually proceeds as in Algorithm
2.

Algorithm 2. The MOEA/D general framework

Input: • network parameters (A, N, E, Rs, Pmax);

• m: population size and number of subproblems;

• T: neighbourhood size;

• uniform spread of weight vectors (�1, 1 −�1), . . ., (�m, 1 −�m);

• the maximum number of generations, genmax;
Output: the external population, EP.
Step 0 – Setup: Set EP : =∅; gen : = 0; IPgen : =∅;
Step 1 – Initialization: Uniformly randomly generate an initial
internal population IP0 = {X1, · · · , Xm};
Step 2: For i = 1, . . .mdo
Step 2.1 – Genetic operators: Generate a new solution Y using
the genetic operators.
Step 2.2 – Repair/improvement heuristic: Apply a scalar
repair/improvement heuristic on Y to produce Z.
Step 2.3 - Update populations: Use Z to update IPgen, EP and the
T closest neighbour solutions of Z.

Step 3 – Stopping criterion: If stopping criterion is satisfied, i.e.
gen = genmax, then stop and output EP, otherwise gen = gen + 1, go
to Step 2.

The internal population IPgen of size m keeps the best solution
found so far for each subproblem. The initial solutions of IP0 are
generated either randomly [7], which is also the case in this paper,
or by a problem-specific heuristic [35]. Solution Y is generated by
using a selection operator (e.g. the M-tournament selection [7]) to
choose two parent solutions from the IPgen, e.g. Pr1, Pr2, a crossover
operator (e.g. the Adaptive Crossover [7]) to produce a new solution
from Pr1, Pr2 and a mutation operator (e.g. the Adaptive Mutation
[7]) to modify the new solution Y. Solution Z is produced by using a
repair method(e.g. the Repair Heuristic [35]) and an improvement
heuristic on Y. The T closest neighbour solutions of Z are the solu-
tions of the T closest subproblems of i in terms of their weights {�1,
· · · , �m}. This is commonly known as the T neighbourhood of sub-
problem i. The external population EP stores all the non-dominated
solutions found so far during the search.

In this paper, the focus is on the hybridization of the MOEA/D
with an improvement heuristic at Step 2.2.

4. The Generalized Subproblem-dependent Heuristic
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

In this section, we initially design six low-level improvement
strategies, each having different properties and providing differ-
ent treatment to the solutions of the d-DPAP’s search space. Then
we classify the six improvement strategies based on the way that

dx.doi.org/10.1016/j.asoc.2011.02.031
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hey treat a solution (i.e. improve a solution towards the direc-
ion of one objective with/without affecting the other). Finally,
e study how they can be combined to efficiently and effectively

mprove a solution X of a subproblem i and we design the General-
zed Subproblem-dependent Heuristic that is composed of the six
ow-level improvement strategies.

.1. Improve-coverage/affecting Lifetime (ImpCv1(X)):
e-locating sensors for minimizing sensing range overlaps

ImpCv1(X) mainly favours the solutions of the subproblems that
equire high network coverage (i.e. some Xb and Xc in Fig. 2), as
ollows:

The sensing range overlaps between the sensors are minimized
by increasing the distance between them.
The distance that the sensors are shifted is limited and increases
as the distance between the sensors and H increases.
The sensing range overlaps between the sensors and the area
boundaries are minimized.

In ImpCv1(X), a sensor k at location (xk, yk) is shifted backwards
rom its one-hop neighbour j a distance shift, to decrease the sensing
ange overlap between them. The sensing range overlap between
wo sensors k, j denoted as Ao(k, j), is equal to:

o(k, j) = R2
s (q− sin(q)),

here q = 2 × acos(dkj/2Rs). Therefore, by increasing dkj the Ao(k, j)
etween k and j decreases. Note that for dkj = 2 × Rs, Ao(k, j) = 0.

However, ImpCv1(X) may force the solutions of each subprob-
em i with low �i to converge towards a single solution, i.e. XB.
his is undesirable, since our primary aim is to obtain the trade-
ff between the objectives (i.e. the solutions between the extreme
olutions XA, XB in Fig. 2). Hence, the new location (x′

k
, y′
k
) should

e calculated so that the sensing range overlap between sensors k
nd j is decreased, giving also an adequate network lifetime. Let rk,
j be the average traffic load of sensors k and j, respectively, and
= 2.

Firstly, the required distance d′
kj

so that the sensors k and j
eplete their energy supply approximately at the same time is
alculated as follows:

′
kj =

√
Pj × amp× rj
amp× rk

, (6)

nd therefore, the shift that sensor k should move backwards from
is:

hift = d′
kj − dkj. (7)

Consequently, the new location of sensor k is:

x′
k, y

′
k) =

(xk, yk) × d′
k,j

− shift × (xj, yj)

(d′
k,j

− shift)
. (8)

The new transmit power level of sensor k is:

′
k =

(√
(x′
k

− xj)2 + (y′
k

− yj)2

)˛

, (9)

here ˛= 2. The final location and power assignment of sensor
should satisfy Pj × amp× rj = P ′

k
× amp× ri and d′

kj
> dkj so that

o(k, j)′ < Ao(k, j) and (x′
k
, y′
k
) ∈A. The first part of ImpCv(X) is illus-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

rated in Fig. 3.
Thereinafter, ImpCv1(X) minimizes the sensing range overlaps

etween the sensors and the area boundaries. Assuming that the
rea is a rectangle, there are three different cases where a sensor
iolates the boundaries:
Fig. 3. An example of the first part of ImpCv1(X) heuristic.

• Case #1: Violation on x-axis: (a) left or (b) right bound.
• Case #2: Violation on y-axis: (a) lower or (b) upper bound.
• Case #3: Violation on both axes: (a) lower/left, (b) lower/right,

(c) upper/left, and (d) upper/right.

If a sensor k at location (xk, yk) violates any of the Cases #1, #2,
#3 (illustrated in Fig. 4) then, is relocated in area A = [0, x] × [0, y, as
follows:

(x′
k, y

′
k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x′, yk) if Case #1a, where x′ = Rs
(x′, yk) if Case #1b, where x′ = x − Rs
(xk, y′) if Case #2a, where y′ = Rs
(xk, y′) if Case #2b, where y′ = y− Rs
(x′, y′) if Case #3a, so that d(0,0),(x′,y′) =

√
(0 − x′)2 + (0 − y′)2

(x′, y′) if Case #3b, so that d(x,0),(x′,y′) =
√

(x − x′)2 + (0 − y′)2

(x′, y′) if Case #3c, so that d(0,y),(x′,y′) =
√

(0 − x′)2 + (y− y′)2

(x′, y′) if Case #3d, so that d(x,y),(x′,y′) =
√

(x − x′)2 + (y− y′)2

(10)

Finally, sensor k is assigned a Pk, so that it reaches its closest
neighbour. ImpCv1(X) proceeds as in Algorithm 3,

Algorithm 3. The ImpCv1(X) for a subproblem i

Input: Solution X;
Output: Improved solution Y;
Step 1: Order solution X by using the dense-to-spread ordering
[7];
Step 2: Assign transmit power levels to solution X as in Section
2.3;
Step 3: Apply Algorithm 1 on solution X;
For k = 1 to N do
Step 4: If (xj, yj) is (xk, yk)’s next-hop neighbour location and (xj,
yj) /= (xH, yH)then
Step 4.1: Calculate the distance d′

kj
using Eq. (6);

Step 4.2: If d′
kj
> dkjthen calculate the shift using Eq. (7), other-

wise stop;
Step 4.3: Use Eq. (8) to find the new location (x′

k
, y′
k
) ∈A and cal-

culate P ′
k

with Eq. (9). Replace (xk, yk) ∈ X with (x′
k
, y′
k
) and set

Pk = P ′
k
;

Step 5: If sensor k violates any of the Cases #1, #2, #3 then
Step 5.1: Calculate a new location (x′

k
, y′
k
) using Eq. (10). Replace

(xk, yk) with (x′
k
, y′
k
);

Step 5.2: Set Pk, so that sensor k at (xk, yk) reaches its closest
one-hop neighbour;
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

Step 6: Output Y = X;

In Step 1, the solution is ordered (i) to manipulate the current
locations and power levels more easily and (ii) to start modifying
the locations from inside of the area A to outside. In Step 2, the

dx.doi.org/10.1016/j.asoc.2011.02.031
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Fig. 4. The cases of boundary viol

ower assignment of solution X is calculated. In Step 3, the algo-
ithm that evaluates the lifetime is applied to solution X to get some
etwork information about the current network topology (e.g. rj(t)
f sensor j). In Step 4, when sensor k has many one-hop neighbours,
hen (xj, yj) is the one with the smallest dkj and consequently the
argest Ao(k, j). The locations (xk, yk) of the sensors which are directly
onnected to H are not modified. In Steps 4 and 5, some sensor
ocations and transmit power levels are updated, accordingly.

emark. This method focuses at improving the coverage objec-
ive having a negative impact on the lifetime objective, since the
ensors’ transmit power levels increase resulting to higher energy
onsumptions. Therefore, it mainly favours the solutions of area c
nd might favour some solutions of area b (i.e. Xb, Xc).

.2. Improve-lifetime/affecting coverage (ImpL1(X)): re-locating
ensors for decreasing transmit power level

The goal of ImpL1(X) is to densely deploy the sensors around H
nd decrease their transmit power levels while they get closer to
, as follows:

A sensor j at location (xj, yj) is moving towards its one-hop
eighbour h at location (xh, yh) a distance shift, which depends on:

the energy consumption of sensor j at time t, i.e.
(rj(t) + 1) × Pj × amp,
the energy consumption of sensor k at location (xk, yk) at
time t, which considers sensor j as its one-hop neighbour, i.e.
(rk(t) + 1) × Pk × amp,

so that sensors j and k deplete their energy supply approxi-
ately at the same time, the energy consumption is given by Eq.

1).
Let rj and rk be the average traffic load of sensors j and k, respec-

ively, during the network lifetime and ˛= 2. Firstly, the required
istance d′

jh
between sensors j and h, so that sensors j and k deplete

heir energy supply approximately at the same time and therefore
ittle residual energy is wasted at the end of a WSN lifetime, is
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

alculated as follows:

′
jh =

√
d2
kj

× amp× rk
amp× rj

. (11)

Fig. 5. Examples of the
in the second part of ImpCv1(X).

Consequently, the shift that sensor j should move towards h is:

shift = djh − d′
jh (12)

Thereinafter, the new location of sensor j is:

(x′
j, y

′
j) = (xj, yj) + shift × [(xh, yh) − (xj, yj)]

djh
. (13)

The updated transmit power levels of sensor j and k are:

P ′
j
=

(√
(x′
j
− xh)2 + (y′

j
− yh)2

)˛
,

P ′
k

=
(√

(x′
j
− xk)2 + (y′

j
− yk)2

)˛
,

(14)

the final location and power assignment of sensor j should satisfy
d′
jh
< djh so that the energy consumption of sensor j is decreased

and shift < djH. ImpL(X) proceeds as in Algorithm 4.

Algorithm 4. The ImpL1(X) for a subproblem i

Input: Solution X;
Output: Improved solution Y;
Step 1: Order solution X by using the dense-to-spread ordering
[7];
Step 2: Assign transmit power levels to solution X as in Section 2.3.
Step 3: Apply Algorithm 1 on solution X;
Step 4: For j = 1 to Ndo
Step 4.1: Calculate the distance d′

jh
using Eq. (11);

Step 4.2: If d′
jh
< djhthen calculate the shift of j towards h using

Eq. (12), otherwise stop;
Step 4.3: If shift < djhthen calculate the new location (x′

j
, y′
j
) using

Eq. (13),
the transmit power levels P ′

j
and P ′

k
using Eq. (14) and update X;

Step 5: Output Y = X;

In Step 1, the solution is ordered (i) to manipulate the current
locations and power levels more easily and (ii) to start modifying
the locations from inside of the area A to outside. In Step 2, the
power assignment of solution X is calculated. In Step 3, the algo-
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

rithm that evaluates the lifetime is applied to solution X to get some
network information about the current network topology (e.g. rj(t)
of sensor j). In Step 4, some sensor locations and transmit power lev-
els in X are updated, accordingly. The procedure and some special
cases of ImpL1(X) are illustrated in Fig. 5.

ImpL1(X) strategy.

dx.doi.org/10.1016/j.asoc.2011.02.031
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Fig. 6. The main concept of Imp1(X).

emark. This method focuses at improving the lifetime objec-
ive having a negative impact on the coverage objective, since the
ensors are shifted towards the center of the area. Therefore, this
ethod mainly favours the solutions of area a and might favour

ome solutions of area b (i.e. Xa, Xb).

.3. Improve-lifetime/without affecting coverage Imp1(X):
ncreasing transmit power level for better load balancing

In the previous improvement heuristic, the concept that many
hort hops are more efficient than a single long hop is followed, con-
ecting each sensor to its closest neighbour sensor, in terms of the
uclidean distance between each other [5,47]. In d-DPAP however,
ransmitting packets via multiple short hops may consume more
nergy [10,6] and may not be the optimal transmission structure
or all solutions in the objective space.

For example, let sensor i be the source, sensor j the destination
nd sensor k an intermediate sensor. The total energy consumption
f a long hop dij is equal to:

× amp× (dik + dkj)˛ + 2kEct + Es,

nd the total energy consumption of two short hops is equal to:

× amp× (d˛ik + (2dkj)
˛) + 4kEct + 2Es.

Hence, if the following inequality is satisfied, the single long hop
s more energy efficient than the two short hops:

dik + dkj)˛ − (d˛ik + (2dkj)
˛)<

2kEct + Es
k× amp .

n this account, the lifetime of the sensors that are directly con-
ected to H and burden most of the network traffic load (i.e. critical
ensors) becomes a vital issue. Imp1(X) improves the lifetime objec-
ive without affecting the coverage by increasing the network load
alancing and the sensors’ individual node-degree. This is achieved
y increasing the sensors’ transmit power level and consequently
heir line of sight. A sensor s at location (xs, ys) ∈ X increases its
ransmit power level Ps (Fig. 6) to,

avoid a critical sensor j at location (xj, yj), which is a positive
advance neighbour of s (i.e. sensor j is closer to H than sensor s in
terms of Euclidean distance) by directly communicating with H,
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

increase the number (node-degree) of its positive advance neigh-
bours u (i.e. sensors u are closer to H than sensor s) falling within
its line of sight and therefore balance its individual traffic load
more efficiently.
 PRESS
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Sensor s, however, needs to ensure that the increase of its Ps

will not cause an earlier depletion of its initial energy supply than
sensor j. Let rj and rs be the average traffic load of sensors j and
s, respectively, during the network lifetime. Thus, the maximum
transmit power level, P ′

s, that can be assigned to sensor s is:

P ′
s = Pj(rj + 1) + (1/amp) × (rj − rs)

rs + 1
. (15)

Therefore, sensor s should be assigned a transmit power level:

Ps
′′ = (Rsc)

˛, where Rsc =
{
dsH if(dsH)˛ ≤ P ′

s;
dsu otherwise;

(16)

where u is the farthest positive advance neighbour of s and (dsu)˛ ≤
P ′
s. Imp1(X) is outlined in Algorithm 5.

Algorithm 5. The Imp1(X) for a subproblem i

Input: A solution X;
Output: A solution Y;
Step 1: Order solution X by using the dense-to-spread ordering
[7];
Step 2: Assign transmit power levels to solution X as in Section 2.3.
Step 3: Apply Algorithm 1 on solution X;
Step 4: For each location (xs, ys) ∈ X, where s = 1, . . ., Ndo
Step 4.1: Calculate P ′

s with Eq. (15);
Step 4.2: Calculate Ps

′′ with Eq. (16);
Step 4.3: Replace Ps ∈ X with Ps

′′;
Step 5: Output Y = X;

In Step 1, the solution is ordered to start modifying the transmit
power levels of the sensors, which are close to the critical sensors,
at the center of area A. In Step 2, the power assignment of solution
X is calculated. In Step 3, the algorithm that evaluates the lifetime
is applied to solution X to get some network information about the
current network topology (e.g. rj(t) of sensor j). In Step 4, some
sensor transmit power levels are updated accordingly.

Remark. Imp1(X) focuses at improving the lifetime without affect-
ing the coverage objective, overall.

Another way of increasing the node-degree of sensor s, which
may increase the network load balancing, is by adding more sen-
sors u within its line of sight. However, in the d-DPAP the number
of sensors is fixed and the node-degree of s can be only increased by
relocating an existing sensor u within its line of sight. In that case,
one should tackle the following issues: “Which sensoru to relocate?”
and “Where to relocate sensoru ?”. The following two improvement
strategies increase the network load balancing, favouring the net-
work lifetime, by tackling the aforementioned issues.

4.4. Improve-lifetime/without affecting coverage (Imp2(X)):
re-locating sensors for better load balancing

Imp2(X) facilitates the network lifetime of a solution X without
affecting the coverage by selecting and relocating a sensor s within
another sensor’s line of sight. Initially, Imp2(X) identifies a sensor
s ∈ {1, . . ., N} that satisfies the following conditions:

• Its relocation does not violate the connectivity constraint (defined
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

in Section 2.2) or partitions the network. Thus, sensor s is relo-
cated iff,

�u∈ {1, · · · ,N}|s∈nu, |nu| = 1,

dx.doi.org/10.1016/j.asoc.2011.02.031
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ig. 7. Example of a network design X with sensors u not satisfying conditions C1, C2,
3 and the shadowed sensor s being eligible for relocation. The dashed circles indi-
ate the sensors’ Rs and the solid circle indicates an example of a possible network
artition.

where nu is the set of the positive advance neighbours of sensor
u.
Its relocation does not uncover any previously covered area of the
network. Thus, a sensor s is relocated iff,

�g(x′, y′)R = 1|R = 1, d(xs,ys),(x′,y′) ≤ Rs,

where g(x′, y′) is the monitoring status of the grid centred at (x′,
y′) ∈ A and R is the number of sensors covering that grid.
It is not directly connected to H,

dsH > Rmax.

The locations of all sensors s ∈ {1, 2, . . ., N} that satisfy conditions
1, C2 and C3 are added in the set S. The remaining sensors u, which
o not satisfy the conditions (as illustrated in Fig. 7) are consid-
red ineligible for relocation and remain in their current position.
hereinafter, a sensor s ∈ S is relocated as follows (Fig. 8).

lgorithm 6. The Imp2(X) for a subproblem i
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

Input: A solution X;
Output: A solution Y;
Step 1: Assign transmit power levels to solution X as in Section 2.3.
Step 2: Apply Algorithm 1 on solution X;

Fig. 8. The main concept of Imp2(X).
 PRESS
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Step 3: Generate a set S ⊂ {1, · · · , N}with the locations of all sensors
s that satisfy C1, C2, C3;
Step 4: Identify the location (xj, yj) ∈ X of the critical sensor j, the
location (xu, yu) ∈ X of sensor u and uniformly randomly select a
location (xs, ys) ∈ S of sensor s;
Step 5: If Ruc + Rjc > du,j and Ruc − Rjc < du,jthen
Step 5.1: Calculate (x′

s, y
′
s) with Eq. (17);

Step 5.2: Replace (xs, ys) ∈ X with (x′
s, y

′
s) and set Ps = d˛

sh
;

Else
Step 5.3: Uniformly randomly generate (x′

s, y
′
s) so that djs ≤ Rjc;

Step 5.4: Replace (xs, ys) ∈ X with (x′
s, y

′
s) and set Ps = d˛sv;

EndIf
Step 6: Output Y = X;

Let j be a critical sensor (i.e. the sensor that currently depletes
its energy supply first), u the sensor with the highest ru from all
sensors that include j as their positive advance neighbour and h the
farthest positive advance neighbour of j. Note that when j is directly
connected to H then h = H. The new location (x′

s, y
′
s) of s should meet

the following:

(x′
s − xu)2 + (y′

s − yu)2 = (Ruc )˛,

(x′
s − xh)2 + (y′

s − yh)2 = (Rjc)
˛
,

(17)

where˛= 2. The solution of Eq. (17) is two locations, one is the same
as (xj, yj) and the other is (x′

s, y
′
s). Set Ps = d˛

sh
. Imp2(X) is outlined in

Algorithm 6.
In Step 1, the power assignment of solution X is calculated. In

Step 2, the algorithm that evaluates the lifetime is applied to solu-
tion X to get some network information about the current network
topology (e.g. rj(t) of sensor j). In Step 3, the set S with the locations
of all sensors s that satisfy the conditions C1, C2 and C3 is gener-
ated. In Step 4, the locations of the critical sensor j, sensor u and
sensor s are identified. In Step 5, a new location (x′

s, y
′
s) is calculated

and the corresponding transmit power is updated. However, a new
location (x′

s, y
′
s) does not exist if:

• ]Ruc + Rjc < du,h //circles are separated,
• ]Ruc − Rjc > du,h //circles are combined within each other

and only one pair exists if:

• ]Ruc + Rjc = du,j //circles are tangent.

In that case, a new location (x′
s, y

′
s) is uniformly randomly gener-

ated within an Rjc distance from (xj, yj) ∈ X and a Ps = d˛sv is set, such
as sensor s is directly connected to its closest neighbour v, where
dsv ≤ Rmax.

Remark. Imp2(X) focuses at improving the lifetime without affect-
ing the coverage objective, overall.

4.5. Improve-lifetime/affecting coverage (ImpL2(X)): re-locating
sensors for better load balancing

ImpL2(X) facilitates the network lifetime of a solution X and has
a negative impact on coverage by selecting and relocating a sensor s
within another sensor’s line of sight. ImpL2(X) aims at (1) increasing
the load balancing by increasing the number of sensors around a
critical sensor j and (2) decreasing the overall traffic load forwarded
towards j.
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

Initially, ImpL2(X) finds a sensor s ∈ {1, . . ., N} that satisfies the
following condition:

• C4: There exists a path ps, which is the longest (in terms of number
of sensors) among all paths towards H. Sensor s is the source of the

dx.doi.org/10.1016/j.asoc.2011.02.031
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Remark. This method focuses at improving the coverage objec-
Fig. 9. The main concept of ImpL2(X).

path or a “leaf” of a tree that includes ps (i.e. �u ∈ {1, . . ., N} | s ∈ nu,
where nu is the set of the positive advance neighbours of sensor
u), H is the destination and j is a critical intermediate sensor that
burdens most of the traffic load in the path or tree.

The locations of all sensors s ∈ {1, 2, . . ., N} that satisfy condition
4 are added in the set S. Thereinafter, sensor s is relocated, i.e. a
ew location (x′

s, y
′
s) is calculated as in Imp2(X), Eq. (17) in Section

.4. ImpL2(X) (Fig. 9) proceeds as in Algorithm 7.

lgorithm 7. The ImpL2(X) for a subproblem i

Input: A solution X;
Output: A solution Y;
Step 1: Assign transmit power levels to solution X as in Section 2.3.
Step 2: Apply Algorithm 1 on solution X;
Step 3: Generate a set S ⊂ {1, · · · , N}with the locations of all sensors
s that satisfy the condition C4;
Step 4: Identify the location (xj, yj) ∈ X of the critical sensor j, the
location (xu, yu) ∈ X of sensor u and uniformly randomly select a
location (xs, ys) ∈ S of sensor s;
Step 5: If Ruc + Rjc > du,j and Ruc − Rjc < du,jthen
Step 5.1: Calculate (x′

s, y
′
s) with Eq. (17);

Step 5.2: Replace (xs, ys) ∈ X with (x′
s, y

′
s) and set Ps = d˛

sh
;

Else
Step 5.3: Uniformly randomly generate (x′

s, y
′
s) so that djs ≤ Rjc;

Step 5.4: Replace (xs, ys) ∈ X with (x′
s, y

′
s) and set Ps = d˛sv;

EndIf
Step 6: Output Y = X;

In Step 1, the power assignment of solution X is calculated. In
tep 2, the algorithm that evaluates the lifetime is applied to solu-
ion X to get some network information about the current network
opology (e.g. rj(t) of sensor j) as well as identify the longest path
s of the network. In Step 3, the set S with the locations of all s that
atisfy the condition C4 is generated. In Step 4, the locations of the
ritical sensor j, sensor u and sensor s are identified. In Step 5, a
ew location (x′

s, y
′
s) is calculated and the corresponding transmit

ower Ps is updated (similarly to Algorithm 6). There are cases that
x′
s, y

′
s) does not exist (please refer to Section 4.4 for more details).

emark. This method focuses at improving the lifetime objec-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

ive having a negative impact on the coverage objective, due to
he re-location of sensors that are far away from H. Therefore, this

ethod mainly favours the solutions of area a and might favour the
olutions of area b (i.e. Xa, Xb).
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4.6. Improve-coverage/affecting lifetime (ImpCv2(X)): re-locating
sensor for decreasing coverage holes

ImpCv2(X) aims at minimizing the network coverage holes for
maximizing the network coverage. A coverage hole is defined as
a set of consecutive uncovered grid locations, denoted as � with
size |� |. ImpCv2(X) calculates the coverage holes of a particular
network design X using Algorithm 8.

Algorithm 8. The coverage holes of a solution X

Input: A solution X;
Output: A set of locations � ;
Step 0: Set  = 1;
Step 1: While ∃g(x′, y′) = 0 | (x′, y′) ∈ A and (x′, y′) /∈� j, j = 1, . . .,
 do
Step 1.1: Set � =� ∪ (x′, y′);
Step 1.2: While ∃(x′′, y′′) = 0 | (x′′, y′′) ∈ Ado
� =� ∪ (x′′, y′′),
where (x′′, y′′) are all consecutive grids of each (x′, y′) ∈� with
g(x′′, y′′) = 0;

Step 1.3:  = + 1;
Step 2: Output � j, where |� j |≥|� k |, for k = 1, . . .,  ;

In Step 1, the coverage holes � j are identified, where j = 1, . . .,
 . The loop continues until all uncovered grids are added in a cov-
erage hole. In Step 1.1, a new coverage hole� j is identified and the
location of its first uncovered grid is added. In Step 1.2, the loca-
tions of all the consecutive uncovered grids are iteratively added in
the current coverage hole, � j. Step 2 outputs the largest coverage
hole� j, i.e. the coverage hole with the highest number of locations,
where j = 1, . . .,  and  is the total number of holes in X.

Algorithm 9. The ImpCv2(X) for a subproblem i

Input: A solution X;
Output: A solution Y;
Step 1: Generate a set S ⊂ {1, · · · , N}with the locations of all sensors
s that satisfy the conditions C1, C2, C3;
Step 2: While S /= ∅ and Cv(X) /= 1do
Step 2.1: Find the largest coverage hole � with Algorithm 8;
Step 2.2: Uniformly randomly select a new location (x′

s, y
′
s) ∈� ,

such that ∃u ∈ {1, . . ., N} | dsu ≤ Rmax;
Step 2.3: Replace (xs, ys) ∈ X with (x′

s, y
′
s) and set Ps = d˛su;

Step 2.4: Remove (xs, ys) from S;
Step 3: Output Y = X;

Thereinafter, ImpCv2(X) identifies the locations of all sensors s
that satisfy the constraints C1, C2 and C3, defined in Section 4.4, and
add them in set S. A new location (x′

s, y
′
s) is then uniformly randomly

selected from � , so that ∃u ∈ {1, . . ., N} | dsu ≤ Rmax. ImpCv2(X) is
outlined in Algorithm 9 and exemplified in Fig. 10.

In Step 1, the locations of all sensors that satisfy the constraints
C1, C2 and C3 are identified and added in the set S. In Step 2, the
coverage holes are iteratively minimized until there are no more
sensor locations (xs, ys) ∈ S that satisfy all conditions and area A
is not fully covered (i.e. Cv(X) /= 1). In each iteration, the largest
coverage hole� is found by Algorithm 8 and a new location (x′

s, y
′
s)

is uniformly randomly selected from� and replaces (xs, ys) ∈ X. The
corresponding transmit power level Ps is updated accordingly.
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

tive having a negative impact on the lifetime objective, since the
re-location of sensors may overwhelm the sensors close to H. There-
fore, it mainly favours the solutions of area c and might favour the
solutions of area b (i.e. Xb, Xc).

dx.doi.org/10.1016/j.asoc.2011.02.031
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Fig. 10. The main concept of ImpCv2(X). The network design is divided into  = 7
c
a
w
a

4

g
s
S
s
t

t

•

•

•

•

•

•

overage holes� j , where j = 1, . . ., 7. The covered grids are denoted as c. The sensors
re marked as circles. Sensor s satisfies all conditions C1, C2, C3 and is relocated
ithin the largest coverage hole, i.e.� 4, to cover a previously uncovered area (shown

s embossed 4).

.7. The Generalized Subproblem-dependent Heuristic (GSH)

In this section, we firstly classify the six improvement strate-
ies into three sets, based on the way that they treat the
olution X of a subproblem i. Then we design the Generalized
ubproblem-dependent heuristic that probabilistically controls the
ix improvement strategies and tackles each subproblem according
o its requirements and objective preference.

The six improvement strategies are classified into the following
hree sets:

SI: Composed of the improvement strategies that benefit the solu-
tions of all m subproblems (i.e. for all �i).
SII: Composed of the improvement strategies that benefit the
solutions of the subproblems which prefer a high network life-
time (i.e. for high �i).
SIII: Composed of the improvement strategies that benefit the
solutions of the subproblems which prefer a high network cov-
erage (i.e. for low �i).

Then, each improvement strategy is added in a set as follows:

Imp1(X) (defined in Section 4.3) and Imp2(X) (defined in Section
4.4) might increase the network lifetime without affecting cov-
erage (coverage remains the same in the worst case). Thus, they
are classified as SI strategies, since they may favour any solution
of the objective space. The solutions of subproblems that favour
a high network coverage, e.g. the solutions of area c (i.e. Xc), may
also be favoured by these strategies, since an improved solution
Xc

′
dominates a solution Xc if Cv(Xc

′
) = Cv(Xc) and L(Xc

′
)> L(Xc).

ImpL1(X) (defined in Section 4.2) and ImpL2(X) (defined in Section
4.5) are classified as SII strategies, since they favour the lifetime
objective and it is very likely to have a negative impact on cover-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

age.
]ImpCv1(X) (defined in Section 4.1) and ImpCv2(X) (defined in
Section 4.6) are classified as SIII strategies, since they favour the
coverage objective and it is very likely to have a negative impact
on lifetime.
Fig. 11. The main concept of the Generalized Subproblem-dependent Heuristic
(GSH)

Finally, the following sets of improvement strategies are
designed,

SI = {Imp1(X), Imp2(X)},
SII = {ImpL1(X), ImpL2(X)},
SIII = {ImpCv1(X), ImpCv2(X)},
for the MOEA/D-GSH to efficiently tackle the d-DPAP. The GSH
aims at improving the solution of each subproblem i as outlined
in Algorithm 10 (Fig. 11).

Algorithm 10. The Generalized Subproblem-dependent Heuristic
(GSH) for subproblem i

Input: A solution X;
Output: A solution Y;
Step 0: Set SS =∅; SI; SII; SIII;
Step 1: Generate a uniform random number rand ∈ [0, 1];
Step 2:

SS =
{
SI ∪ SII if rand ≤ �i,
SI ∪ SIII otherwise,

Step 3: Uniformly randomly generate an integer rand′ from {1, 2,
. . ., | SS |]};
Step 4: Apply improvement strategy rand′ to X to obtain Y;

In Steps 1 and 2, the superset SS is initialized, including the low-
level improvement strategies of SI and either the improvement
strategies of SII or the improvement strategies of SIII, taking into
consideration the objective preference of each subproblem (i.e. the
weight coefficient �i). In Steps 3 and 4, an improvement strategy is
uniformly randomly selected from the superset and is applied to X
to obtain Y.

Note that more low-level improvement strategies can be
designed and adopted by the proposed GSH. Besides, the improve-
ment strategies can be further classified into more sets, considering
more requirements of different areas of the objective space.
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

5. Performance metrics

This section briefly describes the metrics [25,48,49,31,50]
adopted from the literature for comparing the performance of
MOEAs. Comparing set of solutions obtained by different MOEAs

dx.doi.org/10.1016/j.asoc.2011.02.031
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Table 1
Network instances.

Network instances A (m2) N Density (N/A)

NIn1 2500 (50 × 50) 25 0.01
NIn2 2500 (50 × 50) 50 0.02
NIn3 2500 (50 × 50) 63 0.025
NIn4 2500 (50 × 50) 38 0.015
NIn5 3500 (70 × 50) 35 0.01
NIn6 3500 (70 × 50) 53 0.015
NIn7 3500 (70 × 50) 70 0.02
NIn8 3500 (70 × 50) 89 0.025
NIn9 5000 (50 × 100) 50 0.01
NIn10 5000 (50 × 100) 75 0.015
NIn11 5000 (50 × 100) 100 0.02
NIn12 5000 (50 × 100) 125 0.025
NIn13 10,000 (100 × 100) 100 0.01
NIn14 10,000 (100 × 100) 150 0.015
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s not straightforward, since there is not a single metric that can
atisfy all requirements (e.g. convergence, diversity). Therefore, a
et of performance metrics [25,26,49] is often used for this purpose,
ncluding the IGD-metric, the hypervolume measure, the�-metric,
-metric etc. In this paper, the d-DPAP network topologies are
esigned offline and there is no critical need of real-time decision
aking. The main focus of our experimental studies is to evaluate

he performance of the MOEAs in approximating the PF. Thus, in
he absence of the real PF of a d-DPAP instance, the following four

etrics are adopted:

�-Metric[25]: is a diversity metric that measures the extent of
spread of the solutions in the Pareto-optimal set. In the case of
two objectives, the � value of a set of candidate solutions A is
defined as follows:

�(A) = df + dl +
∑

|dj − d|
df + dl + |A|d

,

where df and dl are the extreme Pareto optimal solutions in the
objective space, dj is the distance between two neighbouring
solutions and d is the mean of all the distribution.�(A)=0 means
a uniform spread of solutions in the objective space, therefore a
lower�(A) is preferable.
Coverage (C)-metric[48]: is a commonly used metric for com-
paring two sets of non-dominated solutions A and B, originally
proposed by Zitzler and Thiele [48]. The C(A, B) metric, which
is often considered as a MOEA quality metric, calculates the
ratio of the non-dominated solutions in B dominated by the
non-dominated solutions in A, divided by the total number of
non-dominated solutions in B. Hence,

C(A,B) = |{x∈B|∃y∈A : y � x}|
|B| .

Therefore, C(A, B) = 1 means that all non-dominated solutions
in B are dominated by the non-dominated solutions in A. Note
that C(A, B) /= 1 − C(B, A).
Non-dominated solutions(NDS(A))[31,50]: a straightforward
metric usually considered in cases of real-life discrete optimiza-
tion problems such as d-DPAP, is the cardinality or the number
of Non-dominated solutions in set A, i.e.

NDS(A) = |A|.

In these cases, it is more desirable to obtain a high number of
NDS(A) in order to provide an adequate number of Pareto optimal
choices. In contrast, and usually in cases of continuous optimiza-
tion [32], a high number of NDS is not desirable, since the decision
making procedure becomes more complicated and more time
consuming. However, the NDS should be considered in combina-
tion with other metrics (e.g. � and C metrics), since it is usually
desirable to have a high number of NDS when the solutions is of
high quality (i.e. low C-metric) and spread (i.e. low�-metric) in
the objective space.
Width(wdtfi (A))[49]: the width of each objective f1(x), f2(x) over
a reference set of solutions A obtained by an algorithm is used in
some cases as a performance metric as follows:

A

Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

wdtfi (A) = max{fi(x)|x∈A} − min{fi(x)|x∈EP }.

The wider a PF is, the better. However, the width metric should
be taken into account in combination with the other metrics as
well.
NIn15 10,000 (100 × 100) 200 0.02
NIn16 10,000 (100 × 100) 250 0.025

• CPU time: Besides, it is always desirable to obtain high quality
solutions within an acceptable CPU time.

Therefore, the set of metrics adopted and just described (i.e. the
NDS andwdt in combination with the C and�metrics as well as the
required CPU time) can be considered adequate for comparing the
performance of the concerned algorithms and drawing insightful
conclusions for their efficiency and effectiveness.

6. Experimental results and discussion

The goals of our experimental studies are to (a) study
the effect of the proposed Generalized Subproblem-dependent
improvement Heuristic (GSH) on the performance of the general
purpose MOEA/D, (b) test the strength of the proposed spe-
cialized decompositional approach (i.e. MOEA/D hybridized with
the problem-specific GSH) against the state-of-the-art in Pareto-
dominance MOEAs, the NSGA-II [25], in various network instances
and (c) study the behaviour of MOEA/D-GSH on d-DPAP in WSNs.
Note that, the proposed GSH can be easily hybridized with other
decompositional MOEAs, e.g. MOGLS [40], NSGA-II/MOGLS [51],
etc., with minor changes in the algorithms’ general purpose frame-
work. However, this is out of the scope of this paper.

6.1. Network test instances and parameter settings

We examine 16 network test instances, denoted as NIn and
designed using the popular Factorial design process [52], which
represent a broad class of the small-scale and dense [53] d-DPAP
WSN topologies. Their characteristics are shown in Table 1.

In our experimental studies, the parameters are set as in [7]. That
is, max number of generations genmax = 250, population size and
number of subproblems m = 120, crossover rate rc = 0.9, mutation
rate rm = 0.5, tournament size M = 20 and neighbourhood size T = 2.
Moreover, in all simulation studies the following network param-
eters are set [45,54]: Rs/Rmax = 100/200, E = 5J, dmin = 100 m, a = 2,
amp = 100 pJ/bit/m2 and square-grids of side length 10 m. The net-
work lifetime and coverage are evaluated as in Section 2.2 and the
lifetime objective is normalized by the L(XA) as in [34]. All algo-
rithms were coded in Java programming language and run on an
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

Intel/circledR Pentium 4 3.2 GHz Windows XP server with 1.5 GB
RAM. To increase the fidelity of our experimental studies we have
repeated each experiment of each algorithm for 30 independent
runs, having the same number of function evaluations for fairness.

dx.doi.org/10.1016/j.asoc.2011.02.031
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Fig. 12. MOEA/D-GSH vs. gen

.2. The hybridization of MOEA/D with the GSH

In Step 2.2 of the MOEA/D (Section 3.2), the solution of
ach subproblem is improved by the GSH, detailed in Section
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

. In this subsection, we study the effect of the hybridiza-
ion of the MOEA/D with the GSH. To do so, the performance
f the MOEA/D with and without the improvement heuris-
ic, i.e. MOEA/D-GSH and MOEA/D, respectively, is compared in
In1, 2 and 3.

able 2
OEA/D-GSH (denoted as G) vs. MOEA/D (denoted as M) in NIn1–16.

NIn � (M) � (G) NDS(M) NDS(G)

NIn1: 0.9209 0.8127 5 15
NIn2: 0.9475 0.8432 8 17
NIn3: 0.9867 0.7001 5 12
NIn4: 0.8262 0.7561 30 10
NIn5: 0.8104 0.8421 20 18
NIn6: 0.8228 0.7541 30 13
NIn7: 0.8157 0.7704 24 17
NIn8: 0.7637 0.7483 34 8
NIn9: 0.8350 0.7854 32 16
NIn10: 0.8436 0.8751 31 13
NIn11: 0.8726 0.7875 39 13
NIn12: 0.8155 0.8344 47 12
NIn13: 0.9288 0.8120 13 5
NIn14: 0.9200 0.8863 38 8
NIn15: 0.9060 0.9377 12 16
NIn16: 0.8914 0.8064 12 18

ote that in all cases the best performances are denoted in bold.
Coverage (× A, m2) Coverage (× A, m2)

urpose MOEA/D in NIn1–16.

Fig. 12 shows the PFs obtained by each algorithm and Table 2
summarizes their statistical performance. From these results we
can see that, MOEA/D-GSH outperforms MOEA/D in all network
instances, producing very diverse non-dominated network designs.
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

Specifically, MOEA/D-GSH provides a better average diversity
�= 0.7968 than the average �= 0.8565 obtained by MOEA/D.
Moreover, the non-dominated solutions obtained by MOEA/D-
GSH dominate 79% of the non-dominated solutions obtained by
MOEA/D, on average. This comes at the cost of a poorer compu-

CPU(M) CPU(G) C(G,M) C(M,G)

0.15 0.47 0.2 0.1
0.26 3.79 0.1 0.0
0.32 6.53 0.4 0.0
0.18 3.61 1.0 0.0
0.20 5.28 1.0 0.0
0.22 6.07 1.0 0.0
0.27 5.64 1.0 0.0
1.10 4.05 1.0 0.0
0.87 4.77 1.0 0.0
0.31 7.62 1.0 0.0
0.82 10.43 1.0 0.0
8.65 13.89 1.0 0.0
0.88 11.49 1.0 0.0
0.84 13.91 1.0 0.0
1.59 24.43 0.3 0.1
2.95 41.23 0.6 0.0

dx.doi.org/10.1016/j.asoc.2011.02.031


ARTICLE IN PRESSG Model
ASOC-1131; No. of Pages 18

A. Konstantinidis, K. Yang / Applied Soft Computing xxx (2011) xxx–xxx 13

0 0.5 1
0

0.5

1
NIn1

Li
fe

tim
e 

(×
 L

m
ax

, s
ec

)

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn2

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn3

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn4

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn5

Li
fe

tim
e 

(×
 L

m
ax

, s
ec

)

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn6

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn7

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn8

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn9

Li
fe

tim
e 

(×
 L

m
ax

, s
ec

)

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn10

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn11

NSGAII
MOEA/D−GSH

0 0.5 1
0

0.5

1
NIn12

NSGAII
MOEA/D−GSH

0

0.5

1
NIn13

fe
tim

e 
( ×

 L
m

ax
, s

ec
)

NSGAII
MOEA/D−GSH

1
0

0.5

1
NIn14

)

NSGAII
MOEA/D−GSH

0

0.5

1
NIn15

NSGAII
MOEA/D−GSH

0

0.5

1
NIn16

NSGAII
MOEA/D−GSH

H vs.

t
a

i
t
a
a
f
f

T
M

N

0 0.5 1Li

Coverage (× A, m2)
0 0.5

Coverage (× A, m2

Fig. 13. MOEA/D-GS

ational effort. The average number of NDS obtained by the two
pproaches is the same.

The performance of the proposed MOEA/D-GSH approach is
nvestigated against the popular NSGA-II [25]. NSGA-II main-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

ains a population of solutions of size m at each generation gen
nd adopts evolutionary components for offspring reproduction
s MOEA/D. The key characteristic of NSGA-II is that it uses a
ast non-dominated sorting and a crowded distance estimation
or comparing the quality of different solutions during selection

able 3
OEA/D-GSH (denoted as M) vs. NSGA-II (denoted as N) in NIn1–16.

Net. � NDS CPU

Ins.: (N) (M) (N) (M) (N) (M)

NIn1: 0.9439 0.8127 8 15 0.20 0.47
NIn2: 0.9196 0.8432 10 17 0.31 3.79
NIn3: 0.8991 0.7001 8 12 0.39 6.53
NIn4: 0.9433 0.7561 11 10 0.26 3.61
NIn5: 0.9629 0.8421 12 18 0.29 5.28
NIn6: 0.9541 0.7541 9 13 0.37 6.07
NIn7: 0.9489 0.7704 13 17 0.47 5.64
NIn8: 0.9140 0.7483 12 8 0.60 4.05
NIn9: 0.9778 0.7854 8 16 0.47 4.77
NIn10: 0.9728 0.8751 9 13 0.62 7.62
NIn11: 0.9652 0.7875 9 13 0.80 10.43
NIn12: 0.9473 0.8344 13 12 1.03 13.89
NIn13: 0.9869 0.8120 10 5 1.22 11.49
NIn14: 0.9880 0.8863 12 8 1.71 13.91
NIn15: 0.9844 0.9377 12 16 2.71 24.43
NIn16: 0.9598 0.8064 13 18 2.98 41.23

ote that in all cases the best performances are denoted in bold.
0 0.5 1

Coverage (× A, m2)
0 0.5 1

Coverage (× A, m2)

NSGA-II in NIn1–16.

and update. NSGA-II utilizes a tournament selection, a two-point
crossover (2×) and a random mutation operators. The MOEAs are
compared in all 16 network test instances summarized in Table 1,
considering the same parameter settings for fairness. Note that,
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

in this paper the same number of generations implies the same
number of function evaluations. The reason is that in the proposed
MOEA/D, the GSH is used just once for each subproblem i per gener-
ation, where i = 1 . . .m. The new solution Zi is then evaluated once.
Solution Zi replaces the current best solution Xi of subproblem i iff

C wdtL wdtCv

(M,N) (N,M) (N) (M) (N) (M)

1.0 0.0 0.261 0.854 0.102 0.247
1.0 0.0 0.149 0.862 0.329 0.224
1.0 0.0 0.067 0.874 0.509 0.308
1.0 0.0 0.170 0.928 0.184 0.234
1.0 0.0 0.154 0.958 0.092 0.444
1.0 0.0 0.102 0.967 0.182 0.461
1.0 0.0 0.077 0.965 0.239 0.429
1.0 0.0 0.057 0.963 0.442 0.356
1.0 0.0 0.095 0.952 0.051 0.265
1.0 0.0 0.100 0.958 0.070 0.399
1.0 0.0 0.073 0.962 0.146 0.504
1.0 0.0 0.084 0.969 0.229 0.558
1.0 0.0 0.066 0.982 0.015 0.132
1.0 0.0 0.043 0.977 0.032 0.644
1.0 0.0 0.030 0.983 0.067 0.742
1.0 0.0 0.026 0.977 0.211 0.789

dx.doi.org/10.1016/j.asoc.2011.02.031
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Fig. 14. The overall objective space searched by NSGA-II in 250 generation

i(Zi, �i) > gi(Xi, �i). Therefore, we count m function evaluations per
eneration. This results in m × genmax function evaluations per run,
hich is also the same as the function evaluations used in both the

eneral-purpose MOEA/D and NSGA-II.
The results in Fig. 13 show that MOEA/D-GSH outperforms

SGA-II in all network instances, giving non-dominated network
esigns of both higher coverage and lifetime, which dominate every
etwork design in NSGA-II’s PF and none is dominated. NSGA-II

s not good in obtaining high quality network designs due to the
nnecessary searches of its generic components in the infeasible
egions of the search space and/or the areas where near-optimal
etwork designs are difficult to be obtained. A statistical compari-
on between the two methods is summarized in Table 3. The results
how the superiority of MOEA/D in terms of quality, diversity, width
nd number of NDS in the PF at the cost of a higher computational
ffort.

In the following the searching behavior of the two MOEAs is
tudied and compared in terms of convergence speed. Fig. 14 shows
he overall searching ability of MOEA/D and NSGA-II in the objective
pace as well as a comparison in terms of the convergence speed.
ote that 30,000 network topologies are designed by each MOEA

n the whole evolution. Based on the results,
MOEA/D explores the objective space more efficiently, giving
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

olutions in almost the whole range of the objective space, with
espect to NSGA-II which generally obtains poor solutions. MOEA/D
onverges faster than NSGA-II in all network instances, since the set
f solutions obtained by MOEA/D after 50 generations outperforms
he set of solutions obtained by NSGA-II during the whole search.
he internal population of MOEA/D-GSH at the 50th generation in NIn1–16.

However, the deterministic nature of GSH may lead the proposed
approach to a premature convergence (this will be discussed in
more details shortly).

More insights on the conclusions just mentioned are provided
by the following results. Fig. 15 shows the distribution of the
solutions in various generations for both (a) MOEA/D and (b)
NSGA-II in NIn3. The results show that MOEA/D obtains a vari-
ety of network designs in IPgen from the beginning of the search,
giving more focus on the network designs that prefer high net-
work coverage (i.e. area c). In about the middle of the evolution,
MOEA/D starts searching areas a and b of the objective space more
effectively, obtaining solutions of higher quality. Finally, MOEA/D
obtains non-dominated network designs of high quality across
almost the whole range of the PF. In contrast, NSGA-II is trapped
from the very beginning into network designs of poor lifetime and
coverage.

In conclusion, MOEA/D-GSH is shown efficient and effective
in dealing with the d-DPAP in WSNs with respect to NSGA-II.
This is due to the fact that NSGA-II, and most MOEAs based on
Pareto dominance, try to deal with the MOP as a whole and with-
out any problem-domain knowledge (i.e. as a “black box”). This
results in having difficulties to explore the search space efficiently
and find feasible near-optimal solutions fast. The decompositional
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

nature of MOEA/D, on the other hand, alleviates this difficulty by
decomposing the MOP into many single objective subproblems,
allowing the incorporation of single-objective problem-domain
knowledge (e.g. the GSH proposed here) in a simple manner.
This directs the search into good feasible regions of the objective

dx.doi.org/10.1016/j.asoc.2011.02.031
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pace, improving the convergence and diversity of the proposed
OEA/D-GSH approach. Note that the underlying idea behind the
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

roposed problem-specific heuristic might also shed some light
n the design of MOEA/Ds (or other decompositional MOEAs, e.g.
OGLS [40], NSGA-II/MOGLS [51]) for other MOPs from different

isciplines.
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6.3. More discussion on the behavior of MOEA/D-GSH in the
objective space in terms of entropy
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

Finally, we examine the behavior of the MOEA/D in the objective
space of the d-DPAP in terms of diversity in the IP nd convergence
using the Shannon’s entropy [55]. Entropy shows the variation of
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Fig. 17. Decoding non-dominated solutions of diff

he internal population between two consecutive generations for
he results obtained by the MOEA/D in all 16 network instances, as
ollows:

ntropy = −
121∑
j=1

p(xj) log(p(xj)), (18)

here p(xj) is the probability mass function that gives the prob-
bility of a variable to be equal to some value. In our case, the
ifetime and coverage of each solution are rounded up, and p(xj)
s estimated as the proportion of the population that has the same
nique xj=(lifetime,coverage) in each generation (note that the total
umber of unique values is 121).

The results of Fig. 16 show that the diversity of the IP of MOEA/D-
SH is high in most cases compared to MOEA/D. When the area size

s small (i.e. NIn1–9), the MOEA/D-GSH initially obtains a diverse
et of solutions, in which entropy increases in the first few itera-
ions and then decreases or remain relatively fixed. When the area
ize increases, the entropy decreases at the beginning of the evolu-
ion and then remains relatively fixed (i.e. NIn10–11) or increases
NIn12–15). In that case, MOEA/D-GSH obtains a diverse set of
olutions at the very beginning of the search and then requires
few iterations (about 100 generations) to explore the objective

pace and reach other feasible regions. Thus, one can say that
he d-DPAP becomes harder as the area size increases. In NIn16
i.e. the highest number of sensors and the largest area size stud-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

ed in this section), the entropy increases almost linearly. On the
ther hand, the general purpose MOEA/D’s entropy is low from
he beginning until the end of the evolution when the area size
s small, as well as relatively fixed (e.g NIn1–12) and similar in
ew network instances to the entropy of MOEA/D-GSH. When
areas of the PF, obtained by MOEA/D-GSH in NIn4.

the area size is large (i.e. NIn13–16), however, it seems that the
general purpose MOEA/D finds it difficult to explore the objec-
tive space having a low entropy that in most cases decreases
during the evolution. Therefore, the problem-specific GSH may
lead the proposed approach into a premature convergence only
when simple WSN test instances are considered. In that case,
MOEA/D-GSH may obtain a diverse high-quality PF, compared to
the PF obtained by either NSGA-II or the general purpose MOEA/D,
with fewer function evaluations and therefore less computational
effort.

6.4. Decoding the PF of the d-DPAP and a case study example in
WSNs

In this subsection, we illustrate the decoding of the PF, obtained
by the MOEA/D in NIn4 of d-DPAP, which can be used for deci-
sion making. Fig. 17 shows the following Pareto optimal network
designs: Y1, Y2, Y3, Y4, Y6, Y7, Y8, Y9 and Y10, which represent differ-
ent non-dominated solutions in the objective space (please refer
to Section 3.1 for details). Solution Y1 represents the approxima-
tion towards the extreme solution XA, having most sensors densely
deployed around H. Solutions Y2 and Y3 can be classified as solu-
tions of area a, having most sensors directly connected to H and
the remaining sensors with high transmit power levels and high
node-degree. Solutions Y4, Y6 and Y7 can be classified as solutions of
area b. These network designs are composed of both sensors which
bjective energy-efficient dense deployment in Wireless Sensor
t. J. (2011), doi:10.1016/j.asoc.2011.02.031

are deployed close to each other with high node-degree to benefit
the network lifetime and sensors which are spread away to benefit
the network coverage. Solutions Y8 and Y9 represent Pareto opti-
mal solutions of area c, having the sensors spread in the area, with
low node-degree and transmit power levels. Finally, solution Y10

dx.doi.org/10.1016/j.asoc.2011.02.031


ARTICLE IN PRESSG Model
ASOC-1131; No. of Pages 18

A. Konstantinidis, K. Yang / Applied Soft Computing xxx (2011) xxx–xxx 17

oring i

r
N

m
M
s
t
f
c
e
m
n
d
t
n
t
n
s
a
w
s
t
b
c

7

(
t
m
a
p
p
g
s

Fig. 18. MOEA/D-GSH as a sensor placement tool in a monit

epresents the approximation towards the extreme solution XB of
In4.

Case study: MOEA/D-GSH can be used as a sensor place-
ent tool for fire-detection applications in forests. For example,
OEA/D-GSH could be embedded into a monitoring information

ystem (e.g. Fire Management System (FMS),1 FireWatch,2 Koet-
er Fire Protection,3 etc.) to enable real time detection of fires in
orests. The system may be composed of several WSN technological
omponents, including an efficient and effective placement strat-
gy component, as well as a terrain analysis and digital terrain
odeling component, a fire detection, prediction system compo-

ent, etc. MOEA/D-GSH can be utilized in obtaining and providing a
iverse set of Pareto-optimal network design choices (please refer
o the decoding example discussed earlier in this section) to the
etwork manager before making his/her final decision. Note that,
he WSN system model can be easily modified to include various
etwork parameters, e.g. terrain properties as well as irregular area
hapes, and tackled by MOEA/D-GSH with minor changes in the
lgorithm’s structure. The design choices that the MOEA/D-GSH
ill provide are, for example, long-lived topologies covering small

ensitive parts of the forest, or sparse topologies covering almost
he whole forest for short critical periods of time (e.g. summer), or
alanced topologies etc. The MOEA/D-GSH as a sensor placement
omponent in a fire detection system is illustrated in Fig. 18.

. Conclusions and future research

In this work, a Generalized Subproblem-dependent Heuristic
GSH) is proposed and successfully hybridized with MOEA/D for
ackling the multi-objective Dense Deployment and Power Assign-

ent Problem in WSNs. Initially, the d-DPAP is decomposed into
number of scalar subproblems and discussed based on the sub-
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-o
Networks using a hybrid problem-specific MOEA/D, Appl. Soft Compu

roblems objective preferences. Then, the GSH is introduced, i.e. a
robabilistic mixture of six d-DPAP specific improvement strate-
ies, each having different properties and directing the search into
pecific areas of the objective space. Finally, simulation results

1 http://mms.geomatics.ucalgary.ca
2 http://firewatch.cs.ucy.ac.cy
3 http://www.koetterfire.com
nformation system for fire detection applications in forests.

have shown that the hybridization of the proposed GSH with
the MOEA/D obtains better results than the general MOEA/D and
the popular NSGA-II in several WSN test instances. Moreover, the
behavior of the MOEAs in the objective space is discussed using
different metrics, such as the Shannon’s entropy, giving important
insights.

There is a number of avenues for further research. For example,
it will be interesting to extend the GSH, using more problem-
specific heuristics having different properties to explore different
areas of the objective space. Besides, hybridizing the proposed GSH
with other decompositional approaches, such as MOGLS, NSGA-
II/MOGLS etc., and studying their behavior in the objective space
as well as their performance compared to MOEA/D-GSH is also
at the top of our list. Moreover, the DPAPs in WSNs include
many features and issues (e.g. interference, delay), which are also
important as those in the proposed d-DPAP. Thus, various multi-
objective DPAPs can be defined and tackled by problem-specific
MOEA/Ds, similarly to this work. Moreover, the underlying idea
behind the proposed problem-specific heuristic might also shed
some light on the design of MOEA/Ds for other MOPs from different
disciplines.
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